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Multipole expansions in four dimensions 
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Department of Physics, and Guelph-Waterloo Program for Graduate Work in Physics, 
University of Guelph, Guelph, Ontario N1G 2W1, Canada 

Received 3 May 1983 

Abstract. In this paper we consider four-dimensional electrostatics. In 4D the electrostatic 
multipole moment of order l ( 1 = 0 ,  4, 1 .  ..) is a tensor with (21+1)* independent 
components. We derive the multipole expansions for the potential due to an arbitrary 
distribution of charge, and for the energy of a charge distribution in a spatially non-uniform 
external electric field. We also derive the multipole expansion for the interaction energy 
of two rigid, non-overlapping charge distributions. The results are expressed in both 
Cartesian tensor and hyperspherical tensor forms. 

The transformation properties of the moments, under the symmetry operations of the 
4D rotation-reflection group 0,, and under translation of the coordinate axis system, are 
also derived. 

1. Introduction 

Problems in electrostatics generally involve computing either (a) the electric potential 
4 ( r )  or field E ( r )  = -V+ produced by a charge distribution p ( r ) ,  or (b) the interaction 
energy U of a charge distribution with a field, generated either by a second distribution, 
or imposed externally in some essentially arbitrary specified fashion. In either case, 
provided spatial variations in E ( r )  are sufficiently weak on the scale of length that 
characterises p ( r ) ,  one can employ electrostatic multipole expansions to calculate E (  r )  
(case (a)) or U (case (b)) (Buckingham 1967, 1978, Gray 1968, 1976, Gray and 
Gubbins 1983). 

In the multipole expansion of U the interaction energy is decomposed into a 
succession of terms representing the interaction of the nth multipole moment of the 
charge distribution with the nth derivative of the potential ( ( n  - 1)th derivative of the 
field), evaluated at some point within the distribution. Such a series may only be 
asymptotically convergent if p ( r )  does not fall strictly to zero outside some region of 
space (Jansen 1958); usually, however, it is a valid approximation to retain only a few 
terms (and sometimes only the leading term) of the multipole series. For example, at 
separations of chemical or physical interest, the anisotropic component of the electro- 
static interaction energy between two CO2 molecules is well represented by the 
quadrupole-quadrupole energy. 

Calculations using the multipole expansion are often quite simple in practice. This 
is true even of high-order terms in the series if one uses spherical tensor methods 
(Gray 1968, 1976, Gray and Gubbins 1983) rather than the more familiar Cartesian 
tensor formalism (Buckingham 1967, 1978, Gray and Gubbins 1983). 

Multipole expansions in three dimensions ( 3 ~ )  are well known. It is of interest, 
both intrinsically and in statistical mechanics, to consider other dimensions d,  e.g. 
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d = 1,2 ,4 .  For d = 1 the potential of a charge varies as r, and the expansions are 
trivial and terminate; for example, the only non-vanishing two-body electrostatic 
interaction energies are the charge-charge and charge-dipole terms. In 2~ J o s h  and 
Gray (1983) have recently derived the expansions for (a) the potential outside a given 
charge distribution; (b) the interaction energy of a rigid charge distribution with a 
given external field; and (c) the interaction energy of two non-overlapping rigid charge 
distributions, expressing the results in both Cartesian tensor and circular tensor forms. 
They found interesting differences from the 3~ case. For example, in 2 ~ ,  in any order 
I the multipole moment has at most two independent components; in 3~ this number 
increases with 1 (as 21+1). Further, they showed that in 2D there is an infinity of 
preferred relative orientations for two interacting multipoles, which implies that in 
some respects, at least, the physics of 2~ fluids and lattices may differ appreciably from 
that of their 3~ analogues. 

In this paper we derive the analogous results in four dimensions. The results are 
of mathematical interest in their own right: we find that the special functions which 
take the place of the multipole-multipole coupling tensors T'"(f )  and e-irAe (in 2 ~ )  

and P c f ) ( f )  and Y(,,,(64) (in 3 ~ )  (see Joslin and Gray 1983) are the tensor Chebyshev 
polynomials of the second kind, U"')( f ) ,  and the generalised, or hyperspherical, 
harmonics, D;,(+~x). (Here T") is the tensor Chebyshev polynomial of the first 
kind, P") is the tensor Legendre polynomial, and e-irAe and Yfm( 64) are the circular 
and spherical harmonics, respectively.) The Ith-order multipole moment in 4~ is also 
expressed in terms of these functions, and is shown to have (21+ 1)2 ( I  =0, 4, 1 . . .) 
independent components in general. 

Our results can also be used as a starting-point in the calculation of thermodynamic 
and structural properties of 4~ multipolar lattices and fluids. We can investigate, for 
example, whether there is a change in the nature of an orientational phase transition 
on a lattice, or in the dielectric properties of a fluid, as the dimensionality is increased 
from d = 2 to d = 3 to d = 4. Apart from the intrinsic interest of studies in dimensions 
other than d = 3, such calculations may provide a basis within which to calculate various 
properties of 3~ systems using dimensional perturbation theory (Fisher 1974, Wilson 
1979) about d = 4 or d = 2. (In 4~ critical exponents are trivially obtainable, it being 
generally accepted that they have their classical, or mean-field, values; in 2~ exact 
solutions (Baxter 1982) and more reliable computer simulation results (Occelli et a1 
1978, Bossis and Brot 1981, and references therein) are sometimes available.) 

2. Solution of the 4~ Laplace equation 

The electrostatic potential 4 ( r )  at a source-free point r = ( r l ,  r2 ,  r3 ,  r4) satisfies the 4~ 

Laplace equation 

To solve (2.1) we transform from the Cartesian set ( r l ,  r2 ,  r3 ,  r4) to polar coordinates 
( r ,  6, 4, x): 

rl = r sin $6  sin4(4-x) ,  

r3=rcos48s in&(4+X) ,  

r2 = r sin t 6  cos &(4 -x), 
r4 = r cos & 6 cos +( c$ + x). (2.2) 
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The r, (with r = 1) are the usual quaternion, or Euler-Rodrigues, parameters (Casimir 
1931, Goldstein 1980, Biedenham and Louck 1981, Gray and Gubbins 1983). The 
unit hypersphere is covered once if we allow 

OS4<257, 

o s e s T  and 2.rr s e s 3.rr, (2.3) 

Osx<257, 

the first and second ranges of 6 covering, respectively, the two hemispheres 14 > 0 and 
r 4 < 0  (Biedenharn and Louck 1981). There is thus a fwo-to-one correspondence 
between points on the 4~ hypersphere and the configurations of a rigid body in 3~ 
specified by the set of Euler angles (4, 8, x). 

For angular parametrisations alternative to (2.2) see e.g. Biedenharn and Louck 
(1981). While the use of Euler angles is not encountered in the literature as commonly 
as the usual spherical polar coordinate formulation, it offers the distinct advantage of 
generating solutions of Laplace's equation in terms of the 3~ rotation matrices, or 
generalised spherical harmonics (vide infra). The properties of these functions are of 
course well known from a study of the 3~ rotation group (Brink and Satchler 1968). 

In polar coordinates (2.1) reads 

054 + ( 4 / r 2 ) V A 4  = 0,  (2.4) 

where the radial and angular parts of V2 are given by 

and 

v2 -- 

The angular Laplacian (2.6) satisfies CA = -L2,  where L2 is the operator for the square 
of the total angular momentum of a rigid body in three dimensions. The eigenfunctions 
of 0; are immediately deduced to be the generalised spherical harmonics (hyper- 
spherical harmonics) Dk,( f l )  = Dk,(dex) (Hund 1928, Casimir 1931, Gray and 
Gubbins 1983): 

(2.7) 
In 3~ the D!,, (a) are the transformation matrices for the spherical harmonics Ylm( 04) 
(Rose 1957, Brink and Satchler 1968, Gray and Gubbins 1983; we use the 
definition of Dkn(Q) of these authors). In 4~ the Dkn(0)  furnish a complete set of 
spherical harmonics if we allow half-integral as well as integral values of I ;  this 
corresponds to the fact that in 4~ the identity operation is rotation through 457, rather 
than 257, radians (this is evident from (2.2)). 

We now seek solutions of (2.4) in the form d = rkDkn (a). We find using (2.7) 
that either k = 21 or k = -2( 1 + 1). The general solution is therefore 

(2.8) 

where aImn and blmn are arbitrary constants. (In (2.8) and all subsequent equations it 
is understood that & implies a summation over the values 1 = 0, 1, 1 ,  . . . , OD.) 

v;Dk, (a) = - I (  1 + l )Dt ,  (a). 

4(r, 0) = C almnr21Dfnn (a)+ C b l m , , r - 2 ( 1 + ' ) ~ 1  mn (a), 
Imn Imn 
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The potential of a point charge cannot depend on Sz, and must therefore be given, 
to within a constant, by 

4(r )  = 4 / r 2 ,  (2.9) 

with this equation defining the unit of charge. 

3. Multipole expansion of the potential outside a charge distribution 

We refer to figure 1. The potential at the external point P due to the charge distribution 
qi, i = l , 2 , .  . . , N, is, from (2.9), 

N 
(3.1) 2 4 ( r ) =  C qi/(r-ri) * 

i = l  

We make a Taylor expansion of ( r -  ri)-' about the origin 0 (chosen arbitrarily): 

In (3.2) there are n factors V u . ,  , V,, a etc= 1, 2, 3 or 4, and the usual summation 
convention is employed. (In (3.2) and all subsequent equations it is understood that 
8, implies a summation over the values n = 0,1,2,  . . . , CO.) 

We can show that 

v,. . . Vv(l/r') = ( - )"n!  r - ( " + ' ) ~ h 7 . ) . ~  ($1, (3.3) 
where U?.), (F) is a component of the tensor Chebyshev polynomial U(")(;) ,  which 
is defined so that 

E )  = 1, U'"( i )  = 2i, 

U"'( i )  = 4 i f -  1,  U3'(i) = 8%-4fi ,  (3.4) 
= 1 6 H -  12if1+11, 

Figure 1. Geometry for the derivation of the multipole expansion, about the origin 0, of 
the electrostatic potential at the point P external to the charge distribution qi. 
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etc, and in general analogously to the Chebyshev polynomial of the second kind of 
degree n, Un(x) (Gradshteyn and Ryzhik 1965). In (3.4) f =  r / r  is the unit vector 
along r and 1 is the unit tensor of rank 2. A normalised permutation of the indices 
is implied where appropriate: thus in U(3) ,  ( E l ) u B y  = 4( + ?aSay + ?,,SUB). For n 2 2 
the tensors are symmetric in any pair of indices; also, from (3.3),  they are 
traceless, since v2( l / r2 )  = 0. 

Equation (3.3) is the 4~ analogue of the 2~ and 3~ results 

V, . . . V ,  log r = (-Ifl-'(n - I)! r-"TF,!. (?) 

v,. . . V v ( l / r )  = (-Inn! r- 'n+l)Pg.!v(?)  
(2D), 

(3D),  
(3.5) 

in which Tc.!. ( E )  is a tensor Chebyshev polynomial of the first kind (Joslin and Gray 
1983), and Pg,!v(E) is a tensor Legendre polynomial (Kielich 1965). (In the more 
general case of a d-dimensional space, the characteristic functions are tensor poly- 
nomials defined analogously to the Gegenbauer polynomials C:/2-1 (x).) 

We can therefore write (3.2) as 

4 ( r )  = E  r - ( n + 2 ) U ( n ) ( ? )  0 MW2) 3 

n 

where the large dot 0 denotes a full (n-fold) tensor contraction, 
moment M("l2)  is defined as M ( n / 2 )  = Z E l  qir l ,  or more explicitly 

MF,!? = E qiria . . . ri,. 
i 

(3.6) 

and the multipole 

(3.7) 

(The reason we choose to label the nth-rank moment with the superscript in ,  rather 
than n, is to obtain closer correspondence with the definitions of the hyperspherical 
tensor multipole moments (see below).) 

We can alternatively define a moment 

Qh?.!;' = qir: uh?.!. ( E i ) ,  n = 0 ,1 ,2  . . . , (3.8) 
i 

or, equivalently, 

(3.9) 

and then 

The equality of (3.6) and (3.10) follows from the observation that Uh.?.'v is traceless, 
as noted earlier, i.e. 

U'"'( E )  : 1 = 0, n z 2 .  (3.11) 

It is then only necessary to note that the coefficient of xn in U,,(x) is 2" (Gradshteyn 
and Ryzhik 1965). 

The definition (3.9) has the advantage that all moments for which 13 1 contract 
with the unit tensor to give zero: thus the quadrupole moment Q(l)  is traceless, the 
octopole Q'3'2' is traceless in any pair of indices, etc. We can then show (appendix 
1) that the lth-order multipole moment Q"' has at most (21 + 1)2 independent com- 
ponents. (Remember that Q(" has order 1 but rank 21.) 
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The derivation of the multipole expansion of 4 in hyperspherical tensor form is 

(3.12) 

straightforward if we write 

( r  - r,)-' = r-'[ 1 - 2( r i /  r )  i, . i+ ( t i /  r)']-' ,  

and note that 

(1 - 2 t x  + P - ' =  Un(x)t" 
n 

(3.13) 

(Gradshteyn and Ryzhik 1965). Then we get 

1 1 
n r  I I T  I 

4(r , f i )=c  ~ ~ ~ f r ~ U n ( i f ' ; ) = C  m C q i r f ' U Z l ( i i ' ; ) *  (3.14) 

To proceed further, note that the unit vectors if and i are each specified by a set of 
three Euler angles, (& 4, x l )  = i l l  and (4,8, x) = SZ. Suppose that to bring these two 
vectors into coincidence we need to apply a rotation through an angle $ about the 
direction 6 in the three-space spanned by 4, 8 and x. The closure relations for the 
unitary rotation matrices D' yield (Brink and Satchler 1968) 

2 ~ ! n n  ( n i ) D ! n n  (Q)* = 2 Din ( n O D L m  (Q-') 
m ?i mn 

=Tr  D'(nin-') =Tr  Ill($, 6). (3.15a) 

The trace of the rotation matrix depends only on the angle of rotation (Biedenharn 
and Louck 1981): 

Tr D'($, 6) =sin(21+l)j$/sin$$= Uzl(cos$$). 

We next note that from (2.2) 

ti * i =  $ 2 D:: (n,)D::(n)*, 

$ 1 DZ," (ni)D;: (Q)* =cos $$. 

i f *  ;=cos:+. 

4(r,  a) = 

mn 

while as a special case of (3.15a) and (3.15b), taking 1 =:, 

mn 

Therefore we have 

Combining (3.14), (3.15a), (3.15b) and (3.16c), we finally deduce that 

r-2('+1)D' mn (a)*&,, 
lmn 

where we have defined the hyperspherical tensor multipole moments 

a!,,, = 1 qirf'D!,,, (al). 
I  

(3.15 b)  

(3.16a) 

(3.16b) 

( 3 . 1 6 ~ )  

(3.17) 

(3.18) 

In 4~ the characteristic functions which enter the moment definition (3.18) and 
the potential expansion (3.17) are the hyperspherical harmonics Dkn (@x). In 2~ 

and 3~ the corresponding results involve the circular harmonics and spherical 
harmonics Ylm(t94), respectively (Joslin and Gray 1983, Gray and Gubbins 1983). 

From (3.18) we see immediately, in agreement with our earlier conclusion, that 
the lth multipole moment has at most (21 + 1)' independent components. 
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The relationship between the hyperspherical tensor and Cartesian tensor forms of 
the moments is discussed in appendix 2. 

The transformation properties of the a!,,,, under the symmetry operations of the 
4~ rotation-reflection group 04, and under translation of the coordinate axis system, 
are discussed in appendix 3. The QL, (and also the Q"') are irreducible tensors with 
respect to 0,. Note that 

Q?,, = (-)"'-"Q!,,-,,. ( 3 . 1 8 ~ )  

The relation (3.17) can also be derived directly using electrostatic and symmetry 
arguments (analogous to those used in 3~ by Gray (1976) and in 2~ by J o s h  and 
Gray (1983)). We expand the angle dependence of ( r -  r,)-' as a double series in the 
products Di, , ,  (fi,)Dk,,,  (Cl)* (remembering that the D!,,,, furnish a complete set of 
periodic functions in 4 ~ ) .  Because ( r - r , ) - 2  is invariant under rotations, only the 
combinations E,, DL,, (n,)D!,,, (a)* can occur (cf ( 3 . 1 5 ~ ) ) .  Since ( r -  r,)-' satisfies 
the Laplace equations in r and r,, and because the solutions depend on r and r, as in 
(2.8), the expansion must have the form 

( r -  r , ) -2  = AI( rff/r2"+1))Dfnn (n,)D!,,, (Cl)* (3.19) 

for the region r > r , ;  we have used the boundary conditions that ( r - r , ) - 2 + r - 2  for 
r, + 0 or r + CO. The dimensionless constant Ar is found by considering the case where 
r, is parallel to r. Equation (3.19) reduces to 

fmn 

(3.20) 

whereas direct expansion of the LHS of (3.20) gives 

Comparison of (3.20) and (3.21) gives A f  = 1. Substitution of (3.19) in (3.1) then 
yields (3.17). 

If the system of charges q, possesses elements of symmetry, some moments vanish. 
If there is a centre of inversion (twofold rotational axis), all moments with half-integral 
values of 1 vanish; we can have only charge ( I  = 0), quadrupole ( I  = l ) ,  hexadecapole 
( I  = 2) moments, etc. This is readily seen from the definition of the Cartesian moments 
in terms of Chebyshev polynomials, or by noting that under inversion the QL, 
transform according to 

O!,,, + Q!,,,,, = (-)"Ofn, (3.22) 

(see appendix 3; note that in (3.22) and all successive transformation equations, we 
use Schouten's kernel-index notation (Schouten 19541, where the components of a 
tensor which are Oh,, in frame S are denoted Qfn.,, in frame S ' ) .  If there is axial 
symmetry, i.e. if the charge distribution is invariant under an arbitrary rotation about 
some axis i, then we have 

QL, = O'D!,,, (a,), (3.23) 

where Q' is the unique multipole moment of order I ,  and R,- = (dn, e,, ,yd) specifies 
the direction of n* in four-space (see appendix 3). Taking the trace of both sides of 
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principal axis system R = 0, using (3.15 b )  and the definition (3.18), we 

Q' = (21+ I)-' qirflUzl(cos $+,), (3.24) 
I 

where 1+4 is the angle between ri and the symmetry axis n*. In this case (3.17) simplifies 
to 

(3.25) 4(r ,  $1 =C ( Q ~ / ~ ~ " ' " ) v ~ ~ ( c o s ~  $1, 
I 

where $ is the angle between r and 6. 
The Cartesian analogue of (3.23) is 

(3.26) I (21 )  Q?., = Q Va.,," ( i )  

(see appendix 3). In axial symmetry (3.10) therefore simplifies to 

4 ( r, i .  n*) = ( Q1/221r2(1c1) ) U'2"( i )  0 U'2"( 6 ) .  (3.27) 
I 

For continuous charge distributions the definitions (3.9) and (3.18) are replaced 
by integrals over the charge distribution p ( r ) :  

(3.28) 21 (21)  d4rp(r)r ( E ) ,  I 
I 

Q'" = 

where d4r = II",=, dr,, and 

a!,,, = i r 3  dr d n  p(  r)r2'D!,,, (R),  (3.29) 

where d n  = d 4  sin 0 d e  dx and the ranges of integration over 4, 8 and ,y are as given 
in (2.3). In the axially symmetric case, (3.24) becomes 

Q' =* Iom r3 dr Io2* t d$ sin2i$p( r, $)r2'U2,(cos $$) 
21+1 (3.30) 

(cf e.g. Biedenharn and Louck 1981). 

4. Multipole expansion of the energy of a charge distribution in an external field 

Suppose now we have a system of charges qi, i = 1 ,2 , .  . . , N, in interaction with some 
specified external potential 4(  r ) ,  which varies in a smooth, but otherwise arbitrary, 
manner over the charge distribution. The interaction energy is 

N 

U =  C qi4(r i ) .  (4.1) 
i = l  

Expanding 4(  ri) about its value at some origin 0 chosen within the distribution and 
using the moment definition (3.9), we find that 

U = 1 [221(21)!]-'(v%#J)o 0 p, (4.2) 

where V2' = VV . . . (21 factors), and the subscript 0 indicates that the derivatives are 
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to be evaluated at the origin. In deriving (4.2) we have noted that 4 must obey 
Laplace’s equation, so that the extra terms in (1/22’)Q(” not contained in M(’) make 
no contribution to U. Successive terms in (4.2) represent the interaction of the Ith-order 
multipole moment of the charge distribution with the 21th derivative of the potential. 

In terms of the electric field Eo = - ( V C $ ) ~ ,  we can write the interaction energy as 

U =qr$O-;p‘ Eo-$@:(VE),-&idn i(VVE),-&cPi (VVVE)o-.  . . , (4.3) 

where q = p = Q(ll2), 0 = Q(l), i d n =  Q(3’2), Q, = Q(2), etc, are the charge, dipole, 
quadrupole, octopole and hexadecapole moments, etc, of the distribution. 

The above equations constitute an expansion of the interaction energy in the spatial 
derivatives of all orders of the potential. Alternatively, we can expand U as a series 
in the hyperspherical harmonic expansion coefficients 4!,,,, of 4:  

(4.4) 

In (4.4) are included all solutions of V 2 4  = O  which satisfy the assumed boundary 
condition that 4 remains finite as r + 0 (cf (2.8)). It follows immediately from (4.1), 
(4.4) and the definition (3.18) of the moments ai,, that 

U =  4!,,,,Q!%. 
Imn 

(4.5) 

The +in can be related to the hyperspherical components of the gradient of the 
potential. We define the hyperspherical components Vmn of V to be 

i a  i a  
v 1 / 2 1 / 2  = 2  (G-i &) , v1/2-1,2 = -5 (G - i ;) 

(4.6) 

With this normalisation and choice of phases, we have 
Taylor expansion of +( r,R) in terms of the Vmn then reads 

V = X p v  D:/,”(Cl)*V,,. The 

Comparing (4.4) with (4.7), we obtain 

21 

(4.8) 4mn 1 =L dR (( 2 D;?(Cl)*V,.) 4) D!,,, ( C l ) ,  
2T2 (21)! P. 0 

so that 

etc. In (4.9) C(11121; mlm2m) denotes a Clebsch-Gordan coefficient (Rose 1957, 
Biedenharn and Louck 198 1) .  
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5. Multipole expansion of the electrostatic interaction energy of two 
non-overlapping charge systems 

To derive the multipolar expansion of the two-body electrostatic interaction energy 

we expand rI,’ as a double Taylor series in r, and r, (figure 2): 

r;* = ( r - - r z + r , ) - 2  

r,,, . . . r,,, r J a 2 . .  . r , , , ,~ , ,  . . . V,, V,, . . . vV2(1/r2) .  = c -  (-P 
f l , f 1 2  nl! n*! 

(5.2) 

Figure 2. Geometry for the derivation of the multipole expansion, relative to the origins 
0, and 02, of the electrostatic interaction energy of two non-overlapping charge distribu- 
tions q, and 4,. 

r is the vector from the origin in system 1 to the origin in system 2. Using the results 
of § 3, we obtain at once 

where 1 = ll + 1 2 ,  and M“1’ and Q‘“ are the multipole moments of distribution i ( i  = 

For the interaction of two neutral charge distributions, the leading terms in u(12) 
1 ,  2);  Q“,’ 0 U”” 0 Q”2’ denotes thecomplete contraction Okf;’ y1 Uh:” .2Q,; ‘ 1  1 ”,. 

are 
u(12) = - i r -4p1 . U ( ’ ) .  p2+gr-Sp, . ~ ‘ 3 ’ : 0 ~ - i r - 5 0 , :  U ‘ ” .  p2 

+ i r - 6 0 , :  ~ ‘ 4 ’ : 0 ~ - a r - ‘ p ~  

+$r-7p1.  ~ ( 5 ’  :a2-$r-7a1 i ~ ‘ 5 ’ .  p 2 - & r - ’ e l :  ~ ‘ 5 ’ :  n2 
~ ( 4 )  i n2-ar-6al i U ( ‘ ) .  p2 

+&r-’s1,  i U ( ~ ’ : O ~ + O ( ~ - ~ ) ,  (5.4) 
where p, 0, s1 and Q, denote Q‘” for 1 = t ,  1 ,  2 and 2, respectively. The terms in 
(5.4) represent the dipole-dipole, dipole-quadrupole, quadrupole-dipole, quadrupole- 
quadrupole, dipole-octopole, octopole-dipole, dipole-hexadecapole, hexadecapole- 
dipole, quadrupole-octopole and octopole-quadrupole interaction energies. 

Equation (5.3) (and (5.17) below) can also be derived by combining the results of 
§ $ 3  and 4, but the above derivation is more direct. 
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We next show how u(12) can be expressed in hyperspherical tensor form, using 
symmetry and electrostatic arguments analogous to the 3~ case (Gray 1968, 1976). 

First, consider that it must be possible to expand r;’ = ( r -  r, + rl)-’ as a series in 
the triple products Oil,,  (SZ,)D~2n2(SZl)D’,n(SZ)*, since this function is periodic over 
the interval 47r in each of the sets of variables a,, SZ, and 0: 

1;’ = Aif2A2m,nln2n(r,r,r)ollnl ( n 1 ) o f 2 n 2 ( f l , ) o ! n n  (a)*, ( 5 . 5 )  
f , f z f  m l m 2 m  n l n 2 n  

where Ai>A2m,nln2n is some function of r,, rI and r alone. 
Second, we observe that the LHS of ( 5 . 5 )  is a scalar, and must therefore be invariant 

under arbitrary rotations. Using the rotational transformation property (A3.17) , we 
can show that the unique (to within a factor) rotationally invariant combination of 
products of three hyperspherical harmonics Dk,,, (a#), Dk2,,, (a,) and I l k n  ( S Z )  is 

c C(  11 121;  ml m2m) C( 11 121; n ,  n z n ) ~ ! ~ ,  nl (a,)o!i2n2(fi,)o!nn (Q)* (5.6) 
mlmzm n l n 2 n  

(i.e. a generalisation of the usual Clebsch-Gordan series, in which SZ, = SZ, =a);  
therefore we must have 

(5.7) 
where A’1’2’ is a factor independent of the m’s and n’s. The properties of the 
Clebsch-Gordan coefficients (Rose 1957, Biedenharn and Louck 1981) imply a restric- 
tion in the summation over indices in ( 5 . 5 )  to m = m, + m2,  n = n,  + n 2 ,  and a triangle 
condition for the l’s ,  

(5.8) 

Third, we note that r;’ must satisfy Laplace’s equation in each of the variables r,, 

A!j,f2A2m,nl nzn  ( rlrlr)  = A’1‘2’ ( r,r,r) C( 1, 1 2 1 ;  m, m 2 m )  C (  1, 1,l; n1 n 2 n ) ,  

1, + 12 3 13 11, - 121. 

rl and r, and also the boundary conditions 

(5.9) 

With the boundary conditions (5.9) we obtain a solution valid in the region of space 
r > ri + rj, corresponding to the case where the two charge distributions do not overlap. 
It follows from (2.8) that 

A11’2’( r i r j r )  = A ’ 1 ‘ 2 ~ ( r ? ~ 1 y 2 ’ 2 / r ~ ( ’ + ~ ) ) ,  I (5.10) 

where A‘l’2‘ is independent of the 1’s. To balance the dimensionality of the two sides 
of ( 5 . 5 )  we must have 

(5.11) 

which is a stronger restriction on the 1’s than (5.8). The fact that only the maximum 
value of 1 occurs is a consequence of the implicitly assumed rigidity of the two charge 
distributions; for polarisable systems smaller values of 1 are permitted. Similar results 
are found in 3~ (Gray and van Kranendonk 1966, Gray 1976, Gray and Gubbins 1983). 

Finally, the dimensionless constant of proportionality in (5.10) can be obtained by 
considering some special geometry, e.g. when ri, rj and r are all parallel. Noting that 
D i n  (0 )  = timn, and also that 

1 = I ,  + 1 2 ,  

(5.12) 
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(Biedenharn and Louck 1981), we obtain 

( r -  ri + r j ) -2  = (21+ 1 ) A f l f 2 f y ~ f l y ? f 2 / r 2 ( f + ' )  

11 12 

Direct expansion of the LHS of (5.13) yields 

(21+ I ) !  r:f1r2f2 

*> 
- 1 

( r - r i +  r , ) 2 -  g2 (-)" (2f1)! (212)! r 

and therefore 

Afl12' = (-)2'2(2f)!/(211)! (212)!. 

The interaction energy U( 12) is consequently found to be 

(5.13) 

(5.14) 

(5.15) 

x C (  Il 121; m1 m2m) C( 4 121; nl n2n) Q!AInl  Qk2,,Dkn (a>*. (5.16) 

Here Q;,,,, and Qk,,,, are space-fixed components for distributions 1 and 2 respec- 
tively. u(12) can be written instead in a form involving the components Qiini and 
Qiini defined in frames rigidly attached to the two bodies of charge, and which shows 
explicitly the orientational dependences, using the rotational transformation property 
(A3.18) of the moments derived in appendix 3. We find 

x C(fl121; m l m 2 m ) C ( I l f 2 f ;  nln2n) 

x D !A I mi (a 1 D !zli n l  (6 1 ) D i2 mi  ( a 2) D fiz; "2 ( 6 2 )  D !nn ( fi * * (5.17) 

Here (ai, hi)  are the Euler angles specifying the orientation of the body-fixed frame 
of distribution i ( i  = 1 , 2 )  relative to the space-fixed frame (in 4~ the relative orientation 
of two axis systems is in general specified by six angles). 

If both charge distributions are axially symmetric, (5.17) simplifies to 

x C ( 4 f J ;  mlm,m)C(412k n1n2n)D!A1n, (fl1)Dk2n2 (.n2)Dk" (a)*. 
(5.18) 

In (5.18), Q ' k  is the unique multipole moment of order Ii for the distribution i ,  and 
R i  specifies the orientation of the symmetry axis of distribution i ( i  = 1 , 2 )  relative to 
the space-fixed frame. Equation (5.18) also follows from (5.16) and (3.23). 

The Cartesian analogue of (5.18) is 

as deduced from (5.3) and (3.26). In (5.19) Zi is a unit vector along the direction of 
the symmetry axis of distribution i ( i  = 1 , 2 ) .  
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Using (5.19) together with (A2.4) we can write the explicit expressions for the 
energies of interaction between two dipoles (u1 /21 /21)  and between two axial quad- 
rupoles (ul12) as 

(5.20) u 1 / 2 1 / 2  1 = 4r-4PlP2(COS 4 4 1 2  - 4 cos t 41 cos 442) 
and 

~ 1 1 2  = f ~ - ~ 0 1 0 2 (  16 cos2 $41 COS’ $ 4 2 -  8 COS $41 COS 4412 COS 442- 2 COS’ 441 

- 2 cos2 $ 4 2  + 3 cos2 ;+12 + 4), (5.21) 

where pi and 0; are the Cartesian components p4, and 04,4,, respectively, if the 
body-fixed 4’ axes are chosen coincident with Pi, cos ;+hi = P i ( i  = 1,2)  and 

Joslin and Gray (1983) showed that in two dimensionsthe interaction energy of 
a given pair of multipoles is somewhat unusual in that there is an infinity of minima 
(preferred relative orientations). As these authors pointed out, this probably implies 
that much of the physics of 2~ multipolar fluids and lattices differs fundamentally from 
that of their 3~ analogues. In 4 ~ ,  however, the situation appears to be qualitatively 
similar to the 3~ case. For example, we can see from (5.20) that there are only two 
minimum-energy configurations for two interacting dipoles, the familiar head-to-tail 
arrangements p1 ? = p 2  ?= 51. Similarly, from (5.21) there are only four minima 
for two interacting identical, axially symmetric quadrupoles, the ‘T’-shaped conforma- 
tions Pl ?= * l ,  P2 ?= 0 and Rl ?= 0, P2 * i = *l. 

1 cos 2412 = P, * P,. 

6. Convergence of the expansions 

We can readily establish that the multipole expansion of the potential of P 3 converges 
for all points outside the charge distribution, i.e. provided r >  r i ,  i = 1 ,2 , .  . . , N. 
Similarly, the expansion of the two-body interaction energy of D 5 is convergent if the 
two charge distributions do not overlap. However, in the event that one deals not 
with discrete distributions of charge, but rather with some specified charge density 
p ( r )  which does not vanish exactly outside some region of space, convergence may 
only be asymptotic, as in 3~ (Jansen 1958). 
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Appendix 1. The number of independent components of the multipole moment of 
order I (rank 21) 

The Cartesian moments M“)  and Q‘” each have 4” components M:!,, and Qh’.!., 
without regard to symmetry under permutation of the indices. When this symmetry 
is taken into consideration the number of independent components of M “ )  drops to 

( A l . l )  
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since of the 21 indices O <  nl < 21 can be 1 , O G  n 2 S  21 - n,  can be 2,OS n 3 S  21 - n1 - n2 
can be 3, and the remainder must be 4. Straightforward evaluation of the sums in 
(Al . l )  yields 

(A1.2) 

The tracelessness of the Q(‘)  further reduces the number of independent components 
of this tensor below those of M“)  : QtL,7,.,v = 0 makes NI-2 independent restrictions 
on the Qt.).Y. Thus there are at most Nf - Nf-, = (21 + 1)2 independent components of 

This result is consistent with the definition of the hyperspherical tensor moments 
a!,,, in terms of the harmonics D!,,, (equation (3.18)), since m and n can each assume 
21+ 1 values (lml s 1, Jnl s I ) .  

N I -1 - 6(2f + 1)(21+2)(21+3). 

Q ( 1 )  

Appendix 2. Relation between the Cartesian and hyperspherical components of the 
multipole moment tensors 

In this appendix we discuss the relation between the Cartesian 

(A2.1) 

and hyperspherical 

components of the multipole moment tensors. 
In the absence of any symmetry in the distribution of charge, the relationship 

between the two forms (A2.1) and (A2.2) is a complicated one. We note that even 
in 3~ the completely general result has never been derived in a simple, explicit form 
(see Joslin and Gray (1983) for the 2~ case). However, the explicit results for the 
first few moments are easily written down by expressing the hyperspherical harmonics 
D i n  (a) in terms of the Euler angles (4, 8, x) (see e.g. Brink and Satchler 1968), 
thence in terms of ( r l ,  r2 ,  r 3 ,  r4) using (2.2), and finally in terms of Vbz,:),, (F) using the 
definitions (3.4). In this way we find straightforwardly, using the notation previously 
introduced to denote the charge, dipole and quadrupole moments: 
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In the axially-symmetric case a simple relation exists between the unique Cartesian 
and hyperspherical multipole moments in all orders 1. If we set up a body-fixed 
coordinate axis system S’ such that the 4’-axis is coincident with the symmetry axis 
n̂ , then Q“) 0 R2’ = Q$!..4t, and (A3.21) becomes 

Q‘ = K  Q ( 1 )  4’ ... 4’. (A2.4) 

Appendix 3. Transformation properties of the multipole moments under 
translations, rotations and reflections 

In this appendix we derive the transformation properties of the multipole moments 
under (a) translation of the coordinate axis system ( 0  A3.1), and (b) the symmetry 
operations of the 4~ rotation-reflection group O4 (8  A3.2). The general results are 
presented for the hyperspherical tensor moments ai,, because they are more simply 
derived than the corresponding results for the Cartesian moments QL!!,v. 

A3.1. Translation of the coordinate axis system 

Consider two frames S and S’ in arbitrary relative translation. The origin 0’ of S’ is 
displaced by a from the origin 0 of S. The coordinates of a point P are represented 
by the vector r in S and by r’ = r -  4 in S ’ .  In S’ we measure a multipole moment 
QLf,,, (or Q:,,, for brevity) given by 

(A3.1) Q:.,. = C qir:2”D:,nt (ai), 

which we seek to relate to the moments 

I 

(A3.2) 

measured in S. The procedure we employ is analogous to that adopted by Gray (1976) 
in 3~ (see also Gray and Gubbins (1983)). 

We introduce the notation 

f:,,, ( r ,  a )  = rf2”Dfjl,,, (a’). (A3.3) 

We expand f k j , ,  ( r ,  a) in terms of the hyperspherical harmonics of the orientations 
of r and fli of a. In order that this quantity transform properly under rotations of 
the coordinate axis system, i.e. like a hyperspherical tensor of rank 21’, the expansion 
must take the form 

f k . , ,  ( r ,  a )  =C C f”2”(r, a ) ~ ( l l ~ l ‘ ;  mm2mf)C(l121r; nn2n’)DLn ( ~ ) D : ~ , , ~ ( Q ~ ) .  
U 2  mmz nn2 

(A3.4) 

(The proof of (A3.4) follows closely along the lines of the argument which establishes 
(5.6) as the unique rotationally invariant combination of products of three hyper- 
spherical harmonics.) Here f “ ~ ”  ( r ,  a )  is a function of r and a alone. Since f :.,, ( r ,  a )  
is a solution of Laplace’s equation in r’ ,  it must also be a solution in r and a. Therefore 
we have 

(A3.5) 

where f “2” is independent of r and a. We allow only those solutions which satisfy the 

f “ 2 “  ( r, a )  = f”z”y”a24, 
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boundary condition that f;,,,,(r, a )  remain finite as r + O  or a+0 .  Dimensional 
considerations imply that in (A3.5) and successive equations, I + I 2  = 1’. 

To evaluate the dimensionless constant of proportionality in (A3.5) we can consider 
the special geometry R = R o  =R’  =O.  Since I l k ,  (0) = a,,, and using (5.12), we find 

(A3.6) 

whence 

f1l2“ = (-)21q21’)!/(21)! (2/2)!. (A3.7) 

Therefore we find 

(A3.8) 

Note that the coefficient of Q;, on the RHS of (A3.8) is 6,,,6,,,. The change in the 
multipole moment of order I’ on passing from S to S’ involves the lower order moments 
l = / ‘ - l  2 ,  11-1 , . . . , 0. The first non-vanishing moment, in particular, is origin 
independent. 

For the first few Cartesian moments we find 

4’ = 9, p ‘ = p  -2qll, 

O’ = o - 2pa - 2ap + (p  a)I+q(4aa - ~’1). (A3.9) 

In the axially symmetric case, translating the origin a distance a along the symmetry 
axis transforms the scalar moment (3.24) into 

a ”2 Q ‘. (A3.10) 

A3.2. The symmetry operations of the 40 rotation-reflection group O4 

All possible symmetry operations of the orthogonal group O4 (all operations which 
leave unchanged the quadratic form Z“,=, i t )  can be generated from the appropriate 
combination of just two operations: (i) a suitably general proper rotation of the 
coordinate axis system, and (ii) an improper rotation, or reflection. 

In 4~ the relative orientation of two axis systems is in general specified by six angles, 
or, alternatively, by two sets of quaternion parameters, ( r l ,  r2 ,  r3,r4)  and (il, f2,  i3, i4), 
which are defined in terms of R = (4 ,  8, x) and fi = (& 6, i )  analogously to (2.2) (with 
r = 1) .  

Under the passive rotation R, the coordinates of a point R = (R,, RZ, R 3 ,  R 4 )  are 

(i) Rotation of the coordinate axis system 

transformed to R ’ = ( R ; , R i , R ; , R I , )  such that 

(A3.11) 

(Casimir 1931). Note that as a three-parameter transformation, R cannot in itself 
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accomplish the most general rotation of the axes. Thus, the matrix of the r,'s in 
(A3.11) is reducible (in the complex basis of the Cayley-Klein parameters): 

R; -iR; R4-iR3 

Rk +iR; R4+iR3 

where 0 is the 2 X 2 null matrix, and 

M = (  rz + ir, 

(A3.12) 

(A3.13) 

we recognise M as the transformation matrix D'"(R). Hence 0 mixes only the pairs 
R4TiR3++*(R2*iR1). To effect the mixing R 4 ~ i R 3 - T ( R 2 F i R 1 )  weapplyasecond 
rotation fi such that 

(A3.14) 

or equivalently 

/ R; -iR; 

(A3.15) 

R; +iR; 

where h?' is the transpose of a matrix h? defined analogously to (A3.13), but with 
ia replacing r,. 

It is obvious that with successive application of the (commuting) operations R and 
fi, we can accomplish any coordinate transformation with determinant = +1, i.e. a 
general proper rotation of the coordinate axis system. 

We can combine (A3.12) and (A3.15) and write the result in the compact form 

(A3.16) 

It can then be shown that under the combined effect of R and fi, for any I, the 
hyperspherical harmonics D!,," (aR) transform according to 

(A3.17) 

Note that the effect of R on D!,,,(R,) is to scramble the index m, leaving n unchanged, 
while h has exactly the opposite effect. The form of (A3.17) is associated with the 
homomorphism 0f-0~ to -the direct product SUzOSUz (Biedenharn 1961, Talman 
1968). 

It follows immediately from (A3.17) and the definition (3.18) that under the proper 
rotation (R, fi), the hyperspherical tensor multipole moments a!,,, transform according 
to 

(A3.18) 
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For an axially symmetric distribution of charge, Q!,,, depends only on a,, the set 
of Euler angles specifying the direction of the symmetry axis 6 in four-space, and its 
transformation properties must be those of the hyperspherical harmonic Dfn, (a,) 
(see J o s h  and Gray (1983) and Gray (1968 or 1976) or Gray and Gubbins (1983) 
for the corresponding results in 2~ and 3 ~ ) .  Thus we have 

Qfn, = Q'D!,,, (Qd, (A3.19) 

where the constant of proportionality is identified as the unique multipole moment of 
order 1 in the principal axis system Q,- = 0: i.e. Q' = any diagonal body-fixed element 
Qt.,,. 

The Cartesian analogue of (A3.19) is 

QL!!," = Q ' U=,,," (2') (4. (A3.20) 

To prove (A3.20) we simply note that when there is axial symmetry, the moment Q"' 
can depend only on 5; and that, to within a factor, U""(6) is the unique symmetric, 
traceless, 21th-rank tensor function of n̂ . To show that the proportionality constant in 
(A3.20) is indeed Q' it is then only necessary to note that forming the full contraction 
of 9") with 6'' yields 

(A3.21) 

which is consistent with (3.9) and (3.24). 
Note that in 4~ the inversion operation ( R I ,  R 2 ,  R 3 ,  R 4 )  + ( - R l ,  - R 2 ,  - R 3 ,  - R J  

has determinant = +1, and can therefore be accomplished by a proper rotation of the 
coordinate axis system; this is not of course the case in 3 ~ ,  but also holds in 2 ~ ,  or 
indeed in any space of even dimensionality. Inversion is effected by changing any of 
4, 0 or ,y by 27r, and it follows that the moments transform as 

a!,,, + Q!,,rn, =(-)"Q',,. (A3.22) 

Q' = (21 + 1)"Q'" 0 R2', 

(ii) Reflection in the R 1 R 2 R 3  subspace 
The reflection 

(R19R29R39 R 4 ) + ( R 1 , R z 9 R 3 , - R 4 )  (A3.23) 

is a symmetry operation with determinant = -1.  This improper rotation is accomplished 
by the Euler angle transformation 

(A3.24) 

Using (3.18) and the known properties of the D!,,,, (Q) (Brink and Satchler 1968), we 
find for the transformed moment 

Q!,,,,, ( - )2 l+"-"  Q-n-m-  I (A3.25) 

MO,  X I  + (-x + T, e + 2n, -4  - T ) .  
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